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Experimental data of Hussein et al. (1993) for the turbulent round jet are used to evaluate 
individual components of Reynolds stress turbulence models. Models for terms in the 
Reynolds stress equations are reviewed, with particular emphasis on linear and nonlinear 
pressure-strain models. Improved coefficients for the Choi and Lumley return-to-isotropy 
expressions have been developed by the authors. These coefficients are valid for a wider 
range of flows than the currently used coefficients. Pressure-strain and transport model 
components are compared to the experimental data for the jet, and agreement is very 
good, indicating that the models are reasonably correct. Predictions using the linear 
models are generally as good as those obtained using nonlinear models, indicating that 
nonlinear models may not be necessary for engineering accuracy for this flow. 

Keywords:  Reynolds stress modeling; turbulent jet flow 

I n t r oduc t i on  

Turbulence models are developed by assuming that the 
turbulence is in a state where certain simplifying conditions 
apply. The resulting models are in a strict sense limited by these 
simplifying conditions, and typically contain one or more 
coefficients that cannot be determined theoretically. It is 
therefore necessary to evaluate these models using experimental 
data, both to validate the underlying assumptions and to 
determine the coefficients. 

The easiest and most common way to evaluate a model is 
to use a simple flow in which the process of interest is the only 
process present. For  example, in Reynolds stress modeling, the 
return-to-isotropy term is evaluated using return-to-isotropy 
experiments, the destruction-of-dissipation term is evaluated 
using decaying grid turbulence experiments, etc. The dis- 
advantage of this approach is that the process of interest in the 
simple flow may not be the same as in more complex flows, or 
the conditions may not be the same as in more complex flows. 
Taulbee (1987) has shown, for example, that return-to-isotropy 
models based on return-to-isotropy experiments are in- 
consistent with several shear flows. This is because the 
Reynolds number of the turbulence in return-to-isotropy 
experiments is low compared to the turbulent Reynolds number 
in these shear flows. 

An alternate approach is to use a complete model to simulate 
a complex flow and to compare the results predicted by the 
model with experimental results. Individual coefficients in the 
model can be turned to make the simulation match the 
experiment. From an engineering viewpoint, this approach has 
the advantage of allowing the modeler to evaluate the model 
as a complete package. Deficiencies in one part of the model 
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can be canceled by deficiencies in other parts of the model. 
While this approach may be necessary and justifiable under 
some conditions, it can lead to incorrect conclusions about the 
model, which could result in a misapplication of the model to 
other flows. In addition, it is difficult for the modeler to 
pinpoint the weaknesses of the model. 

The approach taken in this paper is to find a middle ground 
between the two approaches just discussed. The round jet 
provides an opportunity to use a flow in which several physical 
processes of interest are present, yet individual terms in the 
modeled equations can still be evaluated. To do so, it is 
necessary to make some assumptions about the dissipation, 
which will be discussed later. These assumptions will 
necessarily affect the resulting comparisons; however, much 
useful information can still be inferred, and advances in 
experimental techniques will most likely solve this problem in 
the future. 

A comprehensive set of velocity correlation data for the 
round jet as developed by Hussein, Capp, and George (1993; 
1988; 1983) is used for the present analysis. The experimental 
results are briefly discussed. The turbulence models of interest 
in the present work (specifically, Reynolds stress models) are 
reviewed, including improved expressions for the return-to- 
isotropy coefficient developed by the authors. The models for 
the triple-velocity correlation are compared to the data, and the 
models for the pressure-strain correlation are compared to 
values obtained by balancing the dynamic equations for the 
Reynolds stresses. There is good agreement between the models 
and the data, which suggests that the models are reasonably 
correct. It is shown that present approach can be used 
successfully to evaluate turbulence models. 

S u m m a r y  o f  e x p e r i m e n t a l  resu l ts  

The experimental data for an axisymmetric jet as presented by 
Hussein, Capp, and George (1993) are used here. The data were 

357 



Reynolds stress model assessment: IcE C. Lasher and D. B. Taulbee 

developed using both flying hot wires (HWs) (George and 
Hussein 1991) and burst-mode laser doppler anemometers 
(LDAs) (Capp 1983), and include the mean velocity and the 
second and third moments of the fluctuating velocities. Hussein 
(1988) also developed stationary HW data that are, as expected, 
different from the flying HW data and the LDA data. The flying 
HW data are in general agreement with the LDA data, 
although the LDA data are in better agreement with a balance 
of the momentum equation. The LDA data are therefore used 
for the present analysis;the only missing data in this set are 
the triple correlation vw 2 and the spectral measurements for e. 
The HW measurements indicate that vw 2 is approximately 
equal to 0.55v 3. This approximation will be used in the 
following analysis. 

In order to balance the equations, it is necessary to compute 
derivatives of each of the variables. To simplify this process, 
the data for each variable were fit to an equation using 
least-squares. An appropriate-order polynomial was used to 
obtain an accurate fit. These equations were then differentiated 
to obtain expressions for the derivatives. 

D i s s i p a t i o n  

Direct measurement of the dissipation using stationary probes 
provides only a rough estimate. The use of Taylor's hypothesis 
usually is not very accurate if corrections are not made. For 
this reason, accurate measurements of the dissipation do not 
exist for this flow (George and Hussein 1991). Different 
approaches to determining the dissipation produce different 
and contradictory results, so the exact nature of the dissipation 
profile must be inferred from physical arguments. In this 
section, we will discuss several different estimates for the 
dissipation and explain the basis for selecting a profile. 

Hussein (1988) determined the dissipation by balancing the 
energy equation. All the.~erms containing only velocity were 
determined from the LDA data, as described earlier. For  lack 
of something better, the pressure-transport terms were obtained 
from the closure formula -ffff~i/P = -0.2u~q 2 given by Lumley 
(1978). The profile from this balance is shown in Figure 1. 
Hussein also determined the dissipation from spectral 
measurements. The spectrum was measured with a hot wire at 
several positions across the flow and corrected for the effects 
of fluctuations in the convective velocity (Lumley 1985). The 
dissipation was computed from the one-dimensional (I-D) 
energy spectra (Tennekes and Lumley 1972). These results are 
also shown in Figure 1. 

Based on these measurements, one would infer that there is 
an off-axis peak in the dissipation. The peak from the energy 
balance is near q = 0.05, while the spectral measurements 
indicate a smaller peak near r /=  0.03. The existence of this peak 
seems reasonable, since the maximum production is not at the 
centerline; however, one must be careful with these data. The 
energy balance is uncertain, since there was a fair degree of 
scatter in the LDA data near the centerline; the profile for vw 2 
was based on HW data; and Lumley's closure formula was 
used for the pressure transport. The spectral measurements are 
also uncertain, since HW data were used and more data points 
need to be taken. 

The dissipation was also calculated from the modeled 
dissipation equation: 

Oe ~?e 1 0 [ v, Oe'~ e 
U - -  + V - ~r --- ) + (C~,P - C~,e) (1) 

where in the standard k -  e model (Launder et al. 1973), 
v t = O.09k2/e, C~1 = 1.44, C,2 = 1.92, tr, = 1.3 

P in Equation 1 is the turbulent production, and is defined as 
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--U~iU~)dU~/SXk. The above equation in similarity form 
was solved for the dissipation (with all other quantities 
given by LDA measurement), and the profile is shown 
as  the model profile in Figure 1. Hanjalic a n d  L a u n d e r  (1980) 
and Pope (1977) argue that there should be enhanced s c a l e  

reduction that increases the production of vorticity, and they 
added a corrective term. Pope's corrective term, 0.25C~3(k2/e) 
(dU/c~r - c~V/dx)2V/R (where C,3 = 0.79), is added to the right 
side of Equation 1, and the solution is shown in Figure 1 as 
the corrected model. It is seen that both model results are in 
good agreement with the LDA balance, except near the 
centerline, although the corrected model is in better agreement. 
Neither model predicts the pronounced off-axis peak observed 
in the LDA balance and spectral measurements. 

To see if a model dissipation equation could be developed 
to produce an off-axis peak, the terms in the basic dissipation 
equation that are usually neglected were examined. The 
obvious term to produce such an effect is the term involving 
the second derivative of the mean flow. Since the curvature of 
the velocity profile is large near the centerline, this term could 
significantly affect the dissipation. Unfortunately, this term has 
the wrong sign and would tend to increase rather than decrease 
the dissipation in the centerline region. If there is a significant 
off-axis peak in the dissipation profile, then presumably 
something is missing in the dissipation equation model. 

The off-axis peak has not been observed before either in 
measurements or in modeling predictions. Other researchers 
have obtained significantly higher values at the centerline. 
Saetran and Byggstoyl (1985) used HW measurements to 
determine a centerline dissipation value (in similarity form) of 
0.246, and Hussein et al. (1993) obtained a value of 0.32 using 
direct measurement. Based on these results and the earlier 
discussions, the present authors have concluded that there is 
not an off-axis peak, and rather arbitrarily assumed that the 
centerline dissipation value is somewhere near 0.26. A curve 
was then created that blends into the LDA data near r /= 0.10. 
This curve is shown as the assumed profile in Figure 1. This is 
admittedly less than ideal, but is the best that can be done until 
accurate measurements are made. 

Given the importance of the dissipation, it is prudent to 
determine how the present results would be affected if the true 
dissipation profile is different than the one assumed. To 
quantify this effect, the authors performed additional 
computations using the Model profile of Figure 1. With the 
exception of the pressure-transport term, this different 
dissipation profile did not significantly affect the results. The 
experimental values of the pressure-transport term were 
reduced by approximately 30 percent, with the model values 

0.30 

0.25 

0.20 

0.1s t x 
0.10 

0.05 

0.00 
0.00 

Dissipation Profile 

I 
: ~ I o Balance,  L D A  

\o i ~:1 [] Spectra l  M e a s u r e m e n t  
. . . . .  Mode, 

9 D ~ ~ - Corrected Model 
~ ~  I - - A s s u m e d  Profile 

......... • 
0.05 0.10 0.15 0.20 0.25 

r/ 

Figure I Dissipation profile 

unaffected. The change to both the experimental and the model 
values for the pressure-strain correlations were small; less than 
10 percent near the centerline, and less than 5 percent at the 
peak. The change to the model values of the transport 
correlations was negligible (on the order of 2 percent at the 
peak)i with the experimental values unaffected. Based on these 
computations, use of a dissipation profile different than the one 
assumed for the present work would change the exact values 
of the results, but would not change the conclusions. 

It should be noted that Hussein et al. (1993) performed an 
analysis of the jet data using a dissipation that was based on 
the assumption of local axisymmetry, as opposed to the more 
commonly used assumption of local isotropy, and obtained 
somewhat different results than those reported here. George 
and Hussein (1991) showed that the experimental data are more 
consistent with the assumption of local axisymmetry than the 
assumption of local isotropy. The axisymmetry assumption 
leads to a significantly larger dissipation than the isotrophic 
assumption, particularly near the centerline. It is unknown 
whether the dissipation is, in fact, a s large as indicated by the 
axisymmetric assumption, or whether this higher calculated 
dissipation is due to some anomaly, such as the unmeasured 
derivatives being inconsistent with the axisymmetric assump- 
tion. The results obtained by these authors are interesting and 
warrant further study. It should also be noted that the 
dissipation is assumed to be isotropic in the development of 
turbulence models, and this is reflected in the values of the 
model coefficients. In accordance with this fact, computations 
by the present authors showed that the present assumed 
dissipation is in closer agreement with the turbulence models 
than the axisymmetric dissipation. 

R e y n o l d s  s t ress  m o d e l s  

The dynamic equation for the Reynolds stress for high 
Reynolds number flows can be written in Cartesian form as 

Dt c3x k 

- ~u~ c~ U ~ c~ U i 
ctx-~k - UjUk OX~k + c~° -- 2/3Ef, j  (2) 

In Reynolds stress calculations, the terms that need to be 
modeled in this equation are the triple-velocity correlation (first 
term on the right-hand side), pressure-transport terms (second 
and third terms on the right-hand side), and the pressure-strain 
correlation q~j. As previously mentioned, the pressure- 
transport term has been modeled by Lumley (1978) as 
"~ii/P = -0-2u~q z. 

The pressure-strain correlation q~o consists of two parts: the 
return-to-isotropy part and the rapid-strain part. This can be 
written as 

¢'~j = ~ j ,  ~ + ~ j ,  2 (3) 

The return-to-isotropy part can be modeled as (Lumley, 
1978) 

q~,j,, = - C ,  ~ ~ - 2 61jk ) + 7e(b,kbkj + 2IIblj) 

where (4) 

bij = ~iu~/q 2 - tSu/3 II = --bikbki /2 

Equation 4 is referred to as the linear return-to-isotropy model 
if the coefficient ), is zero. Various proposals have been made 
for these coefficients, and their correct value has been an area 
of debate. Launder, Reese, and Rodi (1975) use y = 0 and set 

Int. J. Heat and Fluid Flow, Vol. 15, No. 5, October 1994 359 



Reynolds stress mode/assessment: IN. C. Lasher and D. B. Taulbee 

C a to a constant value of 1.5. This works well in some 
homogeneous shear flows, but has been shown to be 
inconsistent with other flows. Choi and Lumley (1984) 
developed expressions for C 1 and 7 based on experiments of 
homogeneous flows without mean velocity gradients: 

C 1 = 1 + 0.5p*Ft/2/(1 + GX 2) 

p* = [7.69/R~/2 + 73.7/R~ - (296 - 16.2(1 + X)'*)II] 

x exp ( -9 ,29/R~/2)  

~, = (2C~ - 2)G/( 

where (5) 

= (III/2) 1/3 I I I =  bijbjkbkl/3 t / =  ( - I I / 3 )  1/z X = (/r I 
F = l + 2 7 I I I + 9 I I  G = - X  4 + 0 . 8 X  6 Rl=4k2/9ve  

The expressions in Equation 5 have been shown to be 
inconsistent with several shear flows (Taulbee 1987), since the 
experiments used to develop the expressions were all 
low-Reynolds-number experiments, whereas shear flows are 
generally at high Reynolds number. The authors (see Lasher 
1990) modified Equation 5 by taking the functional form for 
p* and refitting it to six return-to-isotropy experiments and 
four homogeneous shear flow experiments. These experiments 
represent a more complete range of Reynolds number than 
those used by Choi and Lumley. Ca can be inferred directly 
from the return-to-isotropy experiments, but obtaining the 
value of Ca from the shear flow experiments is problematic. A 
model must be used for the rapid part of the pressure-strain 
correlation, which will necessarily contaminate the inferred 
value of C a . We have little choice, however, if we are to include 
higher Reynolds number experiments in the coefficient. The 
inferred values of C a were then fit to Choi and Lumley's 
function using least squares to determine values for the free 
coefficients. This produced an expression that is valid for both 
low and high Reynolds numbers, and has been shown to work 
well in both return-to-isotropy and homogeneous shear flow 
predictions. The resulting expression is given in Equation 6: 

p* = [9.5/R~/2 + 230/Rt - (167 - 10.8(1 + X)*)II] 

x exp ( -  lO.2/R]/2) (6) 

A similar expression for the linear part (CO was developed by 
Lumley (1978): 

C a = 1 + F/18 exp ( -  7.77/x/~t)[72/v/~t + 80.1 

x In (1 + 62.4(-11 + 2.3Ill))] (7) 

The authors repeated the process used to modify the nonlinear 
model described above, resulting in the following expression: 

C a = 1 + F/18 exp ( - 3 . 1 / x / ~ l )  

x [29.0 In (1 - 71.0(I1 + 14.3III))] (8) 

The rapid part of the pressure-strain correlation can be 
modeled as 

~)ij.2 -- 
(C 2 + 8) 

11 (Pij -- 2 p(Sij) 

(30C2 - 2) k(t?U, OUr" ) (8C2 - 2) (DiJ _ 2pf i j )  
55  \ Oxj + t3x i / 11 

+ ~kC2 $ c3Up 2 dx~ (6pjb2' + 6~,~bqj - 3bmb~j - bqjbp~ - b~bpi) 

(9) 

where 

° ' i  = - ~ ~x j  ~ x , /  

Launder et al. use the linear part (C2r -- 0) of this expression 
with C 2 = 0.4. Shih and Lumley (1985) developed the form for 
the nonlinear term in Equation 9 and gave the following 
expressions for C 2 and C2f: 

c 2  = - ~ 1 - i 0  (1 + 0 .8F  '/2) C ~ f  = 1 - F a/~ (10) 

Speziale, Sarkar, and Gatski (1991) followed a different 
approach, using dynamical systems theory to develop an 
expression for the entire pressure-strain correlation, which is 
given as 

dpi) = --(C,• + C*P)bi j  + C2(_(bikbkj- 1/3b,.,b,..flj ) 
+ (Ca - C~II1/2)kSij 

+ C4k(bikSjk + bjkSik -- 2/3b,..Sm,fq) 

+ Csk(bikWjk + bjkWik) 

where (1 l) 

Sij = 1/2(dU~/Oxj + c3U/t3xi) Wij = 1/2(t3U/Oxj - dUj/~3xi) 

C a = 3.4, C* = 1.80, C 2 = 4.2, C 3 = 4/5, C* = 1.30, 
C, = 1.25, C5 = 0.40 

Equation 11 can be written in the same form as Equations 3, 
4, and 9, but with significantly different coefficients. The model 
is nonlinear in the return part, but linear (C2f = 0) in the rapid 
part. 

The triple-velocity correlation (first term on the right-hand 
side of Equation 2) has been modeled by Launder et al. as 

k 
lliUjU k ~- C s Gijk 

where (12) 

Oxl Ox~ Oxt 

Equation 12 was developed by simplifying the dynamic 
equations for the third moments using a quasi-Gaussian 
approximation. Launder et al. assign a value of 0.11 to the 
constant C~, which was determined by matching the model 
solution to experimental data. Lumley (1978) made an 
expansion about a Gaussian state, resulting in the following 
expression, which can easily be solved for U~UjUk: 

Ca -- 2 
U~UjUk + 9Ca - (uiq2t~jk + bljq26ik + I~kq26ij) 

1 q2 
- Gij k (13) 

3C~ 

Ca is the coefficient in the closure for the return-to-isotropy 
model, and thus no additional parameters are introduced. 

C o m p a r i s o n  o f  m o d e l s  t o  e x p e r i m e n t a l  d a t a  

A comparison of the pressure-transport model given by Lumley 
(P~i/P = - 0 . 2 u i q  z) is compared with experimental data in 
Figure 2. The experimental values for the radial pressure- 
transport term p-F were determined by balancing the energy 
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equation. The axial transport term p---~ was estimated from 
Lumley's model, and the dissipation was the assumed profile 
in Figure 1. Any error in Lumley's estiamte for the axial 
transport term should have little effect on the results due to the 
relatively minor importance of that term. All other quantities 
were known, allowing determination of the radial transport 
term pv. 

Agreement between the model and experiment is reasonable. 
The model underpredicts the experimental values near the 
centerline, but the peak is well predicted. As discussed earlier, 
the experimental values are strongly affected by the assumed 

dissipation profile, especially near the centerline. This is 
because the slope of the pressure-transport curve is 
proportional to the dissipation. The close overall agreement 
between model and experiment is an indication that the value 
assumed for the centerline dissipation as discussed earlier is 
close to being correct. 

The pressure-strain correlations were evaluated from 
Equation 2 using data from the LDA experiment for the mean 
flow and second and third moments; the assumed profile for 
the dissipation; Lumley's model for the axial pressure-transport 
term; and the experimental values shown in Figure 2 for the 
radial pressure-transport term. The experimental values are 
compared with the models given in Equations 3 to 11. Five 
different models are used; the nonlinear model uses the 
expression for p* developed by the authors (Equation 6) in 
place of the p* in Equation 5 to compute C~ and ~, and by 
Shih and Lumley (1985) given in Equation 10 for C2 and C2~; 
the linear model uses the coefficient developed by the authors 
and given in Equation 8 for C~ and the expression given in 
Equation 10 for C2, with ~ and C2r = 0; the Launder et al. 
model is the linear model with C~ = 1.5, ~ = 0, C z = 0.4, and 
Czf = 0; the Shih-Choi-Lumley model is Equation 5 for C~ 
and ~, with Equation 10 for C2 and Cze; and the 
Speziale-Sarkar-Gatski (SSG) model is Equation 11. The 
equations and coefficients used for each model are summarized 
in Table 1. 

Overall, the agreement between experiment and the models 
is good, as can be seen in Figures 3a-3d. None of the five 
models considered here demonstrates a clear superiority in 
predicting all four of the components; models that agree well 
with experiment for one component do not agree well for other 
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Table 1 Summary of equations and coefficients used for 
pressure-strain models 

Mode/ Cl ~ p* C2 C2f 

Nonlinear Eq. 5 Eq. 5 Eq. 6 Eq. 10 Eq. 10 
Linear Eq. 8 0 N/A Eq. 10 0 
Launder et al. 1.5 0 N/A 0.4 0 
Shih-Choi-Lumley Eq. 5 Eq. 5 Eq. 5 Eq. 10 Eq. 10 
SSG Equation 11 

components. In addition, a particular model may predict the 
peak value well but may not agree with experiment near the 
centerline, and vice versa. 

It should be noted that agreement between the peak value 
of the model and experiment is probably a better indicator of 
success of the model than agreement between the centerline 
values. The experimentally inferred values have a higher level 
of uncertainty near the centerline than near the peaks for two 
reasons. First, we are not confident of the centerline value used 
for the dissipation. An increase or decrease in the centerline 
dissipation would improve agreement for one component and 
increase discrepancies for the others. Second, the slopes of the 
radial transport correlations are very difficult to measure 
accurately. These inaccuracies significantly influence the 
behavior of the experimentally inferred pressure-strain 
correlations near the centerline. 

The present models (linear and nonlinear) are an 
improvement over both Launder's model and the Shih-Choi-  
Lumley model. One could not draw this conclusion on the basis 
of the present results alone, since the overall superiority of any 

of the models is insignificant. However, the present models are 
valid for both low-Reynolds-number return-to-isotropy flows 
and high-Reynolds-number shear flows, whereas the Launder 
et al. model has been shown to be incorrect for the 
return-to-isotropy flows, and the Shih-Choi-Lumley model 
has been shown to be incorrect for some other shear flows. 
Based on the present results, the nonlinear model is not 
superior to the linear model, which indicates that any possible 
advantages may not be worth the added computational 
complexity. Given its simplicity, the linear model is preferable 
for this flow. Work is currently in progress to further quantify 
the performance of the nonlinear model as compared to the 
linear model. 

It should be noted that the SSG model, which predicts total 
pressure-strain components similar to the other models, 
predicts a significantly different decomposition into return-to- 
isotropy and rapid parts. Speziale, Gatski, and Sarkar (1992) 
argue that this decomposition is ambiguous for uniformly 
strained flows, and that what is important is the ability of the 
model to predict the total pressure-strain correlation. The latter 
point is certainly valid, and it is interesting that a model can 
predict such a different distribution into parts, yet agree with 
the total. 

A comparison of the experimentally measured triple-velocity 
correlations with predictions from the models given by Launder 
et al. (Equation 12) and by Lumley (Equation 13) is shown in 
Figures 4a~d .  The coefficients used in the Lumley model is 
the present linear C 1 given in Equation 8, and is denoted as 
the present model in Figure 4. Agreement between the present 
model and experiment is good but erratic for the radial 
transport correlations (Figures 4a~c).  The prediction is 
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excellent for the correlation v--~, but significantly overpredicts 
the correlation b"~. The model underpredicts the correlation 
vww (not shown), but it should be noted that this correlation 
was based on HW dat..._a as discussed earlier. The agreement 
with the correlation vq 2 is also very good. On the whole, the 
present model is superior to the model given by Launder et al. 
It should be noted that the experimental data used by Launder 
et al. to tune their model contained the total effects of diffusion, 
including pressure diffusion, whereas in Lumley's model, 
pressure diffusion is explicit. This can explain a significant part 
of the difference between the Launder et al. model and 
experiment. Neither model accurately predicts t h e  axial 
transport correlation uq2; however, this was not unexpected, 
since the gradient diffusion hypothesis is not really valid in the 
axial direction, where diffusion is relatively weak. 

Schwarz and Bradshaw (1994) performed an analysis similar 
to the present work on a three-dimensional (3-D) boundary 
layer. There are several minor differences between their analysis 
and the present analysis, including their neglecting the 
pressure-transport term. They concluded that the models for 
the triple-velocity correlations are unrealistic and perform 
erratically. They state that some of this poor performance can 
be attributed to their neglecting pressure-transport; however, 
they estimate the pressure-transport term to be small. The 
better agreement between the present model and experiment in 
the present work is probably due in part to the pressure- 
transport term, and in part to the different coefficients used 
here. The comparison of the pressure-strain models to 
experimental data in the boundary layer is similar to that found 
here; specifically, the models predicted experiment well; there 
is little difference between the various model predictions; and 
the nonlinear models did not perform better than the linear 
model. 

Summary 

A comprehensive set of measurements from the turbulent 
axisymmetric jet given by Hussein et al. (1993) was used for 
evaluating single-point closure models. It has been shown that 
a complex flow in which the turbulence is governed by several 
distinct physical phenomena can be used for evaluating the 
individual components of a turbulence model. This approach 
has advantages over the commonly used approach, and 
requires only a few approximations. 

The weaknesses of the present approach are that a model 
must be used for at least one component of the pressure- 
transport term, and the dissipation must be assumed to a 
certain extent. Due to the relatively minor importance of the 
pressure-transport term, the former weakness is probably not 
too important. Advances in experimental techniques will 
hopefully correct the latter weakness, possibly in the near 
future. In spite of these weaknesses, the present approach has 
provided valuable information. 

The turbulence models that use the expressions for the 
return-to-isotropy coefficients developed by the authors have 
been shown to agree quite satisfactorily with the experimental 
data. Both the linear and nonlinear pressure-strain models 
agree reasonably well with the experimentally determined 

values. One would expect some discrepancy, considering the 
fact that the dissipation profile (which was assumed) affects the 
inferred value of the pressure-strain correlation. Agreement 
between the model and experiment for the triple-velocity 
correlations is good. It is certainly encouraging that models 
that were tuned to specific flows work so well in more complex 
flows. 
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